Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Med Sci ; 19(1): 47-64, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975298

RESUMO

Background: Clear cell renal cell carcinoma (ccRCC) is a cell metabolic disease with high metastasis rate and poor prognosis. Our previous studies demonstrate that glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the pentose phosphate pathway, is highly expressed in ccRCC and predicts poor outcomes of ccRCC patients. The aims of this study were to confirm the oncogenic role of G6PD in ccRCC and unravels novel mechanisms involving Cyclin E1 and MMP9 in G6PD-mediated ccRCC progression. Methods: Real-time RT-PCR, Western blot and immunohistochemistry were used to determine the expression patterns of G6PD, Cyclin E1 and MMP9 in ccRCC. TCGA dataset mining was used to identify Cyclin E1 and MMP9 correlations with G6PD expression, relationships between clinicopathological characteristics of ccRCC and the genes of interest, as well as the prognosis of ccRCC patients. The role of G6PD in ccRCC progression and the regulatory effect of G6PD on Cyclin E1 and MMP9 expression were investigated by using a series of cytological function assays in vitro. To verify this mechanism in vivo, xenografted mice models were established. Results: G6PD, Cyclin E1 and MMP9 were overexpressed and positively correlated in ccRCC, and they were associated with poor prognosis of ccRCC patients. Moreover, G6PD changed cell cycle dynamics, facilitated cells proliferation, promoted migration in vitro, and enhanced ccRCC development in vivo, more likely through enhancing Cyclin E1 and MMP9 expression. Conclusion: These findings present G6PD, Cyclin E1 and MMP9, which contribute to ccRCC progression, as novel biomarkers and potential therapeutic targets for ccRCC treatment.


Assuntos
Carcinoma de Células Renais/genética , Ciclina E/genética , Regulação Neoplásica da Expressão Gênica , Glucosefosfato Desidrogenase/fisiologia , Neoplasias Renais/genética , Metaloproteinase 9 da Matriz/genética , Proteínas Oncogênicas/genética , Regulação para Cima , Animais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Ciclina E/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteínas Oncogênicas/metabolismo
2.
Cancer Sci ; 112(10): 4075-4086, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34310804

RESUMO

The regulatory relationship between silent information regulator 2 (SIRT2) and glucose 6-phosphate dehydrogenase (G6PD) in clear cell renal cell carcinoma (ccRCC) is still unclear. The present study aimed to explore the function of SIRT2 and its regulatory effect on G6PD in ccRCC. The Cancer Genome Atlas data mining of SIRT2 was first analyzed. Quantitative real-time PCR and western blot analyses were used to assess the mRNA and protein expression levels, respectively. Cell viability, colony formation, cell cycle, cell apoptosis, and TUNEL assays and EdU staining were used to investigate the roles of SIRT2 in ccRCC proliferation and apoptosis. The coimmunoprecipitation (Co-IP) assay was used to analyze the association between SIRT2 and G6PD in ccRCC cells. Quantitative Co-IP assay was used to detect the levels of G6PD ubiquitination and small ubiquitin-related modifier 1 (SUMO1). An in vivo experiment was also carried out to confirm in vitro findings. The results indicated that SIRT2 promoted ccRCC proliferation and inhibited apoptosis by regulating cell cycle and apoptosis related proteins. Silent information regulator 2 interacted with G6PD, facilitated its activity through deacetylation, and increased its stability by reducing its ubiquitination and enhancing its SUMO1 modification. Silent information regulator 2 also promoted ccRCC tumor development in vivo. Taken together, the present study indicated that SIRT2 promoted ccRCC progression by increasing G6PD activity and stability, and it could be a potential new diagnostic and therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais/metabolismo , Cisteína Endopeptidases/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Neoplasias Renais/metabolismo , Sirtuína 2/fisiologia , Acetilação , Animais , Apoptose , Western Blotting , Carcinoma de Células Renais/patologia , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular , Bases de Dados Genéticas , Progressão da Doença , Feminino , Humanos , Imunoprecipitação , Neoplasias Renais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Modificação Traducional de Proteínas , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco , Ubiquitinação
3.
Cancer Cell Int ; 20(1): 565, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33292264

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

4.
Cancer Cell Int ; 20: 483, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041664

RESUMO

BACKGROUND: Glucose 6-phosphate dehydrogenase (G6PD) serves key roles in cancer cell metabolic reprogramming, and has been reported to be involved in certain carcinogenesis. Previous results from our laboratory demonstrated that overexpressed G6PD was a potential prognostic biomarker in clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer. G6PD could stimulate ccRCC growth and invasion through facilitating reactive oxygen species (ROS)-phosphorylated signal transducer and activator of transcription 3 (pSTAT3) activation and ROS-MAPK-MMP2 axis pathway, respectively. However, the reasons for ectopic G6PD overexpression and the proliferation repressive effect of G6PD inhibition in ccRCC are still unclear. METHODS: The impact of ROS accumulation on NF-κB signaling pathway and G6PD expression was determined by real-time RT-PCR and Western blot in ccRCC cells following treatment with ROS stimulator or scavenger. The regulatory function of NF-κB signaling pathway in G6PD transcription was analyzed by real-time RT-PCR, Western blot, luciferase and ChIP assay in ccRCC cells following treatment with NF-κB signaling activator/inhibitor or lentivirus infection. ChIP and Co-IP assay was performed to demonstrate protein-DNA and protein-protein interaction of NF-κB and pSTAT3, respectively. MTS assay, human tissue detection and xenograft model were conducted to characterize the association between NF-κB, pSTAT3, G6PD expression level and proliferation functions. RESULTS: ROS-stimulated NF-κB and pSTAT3 signaling over-activation could activate each other, and exhibit cross-talks in G6PD aberrant transcriptional regulation. The underlying mechanism was that NF-κB signaling pathway facilitated G6PD transcription via direct DNA-protein interaction with p65 instead of p50. p65 and pSTAT3 formed a p65/pSTAT3 complex, occupied the pSTAT3-binding site on G6PD promoter, and contributed to ccRCC proliferation following facilitated G6PD overexpression. G6PD, pSTAT3, and p65 were highly expressed and positively correlated with each other in ccRCC tissues, confirming that NF-κB and pSTAT3 synergistically promote G6PD overexpression. Moreover, G6PD inhibitor exhibited tumor-suppressor activities in ccRCC and attenuated the growth of ccRCC cells both in vitro and in vivo. CONCLUSION: ROS-stimulated aberrations of NF-κB and pSTAT3 signaling pathway synergistically drive G6PD transcription through forming a p65/pSTAT3 complex. Moreover, G6PD activity inhibition may be a promising therapeutic strategy for ccRCC treatment.

5.
Int J Oncol ; 57(1): 197-212, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32319593

RESUMO

Glucose­6­phosphate dehydrogenase (G6PD) is crucial rate­limiting enzyme of the pentose phosphate pathway (PPP). G6PD dysregulation has been reported in various types of human cancer, and the role of G6PD in cancer progression was demonstrated in numerous studies. A previous study from our laboratory described the prognostic significance of G6PD in clear cell renal cell carcinoma (ccRCC), and demonstrated its proliferative role through positive feedback regulation of the phosphorylated form of signal transducer and activator of transcription 3. However, the role of G6PD in ccRCC invasion remains unclear. In the present study, reverse transcription­quantitative (RT­q) PCR, western blotting, enzyme activity assay, transwell assay and immunohistochemistry analysis in cell model, xenograft mice model and human specimen studies were performed to evaluate the role of G6PD in ccRCC invasion. The results from the present study demonstrated that G6PD may promote ccRCC cell invasive ability by increasing matrix metalloproteinase 2 (MMP2) mRNA and protein expression both in vitro and in vivo. In addition, a positive correlation between G6PD and MMP2 expression was demonstrated by RT­qPCR and western blotting in twenty pairs of ccRCC tumor specimens and matched adjacent normal tissues. Furthermore, G6PD promoted reactive oxygen species (ROS) generation and activated the MAPK signaling pathway in ccRCC cells. In addition, ROS significantly promoted the MAPK signaling pathway activation, which in turn contributed to MMP2 overexpression in ccRCC cells. In conclusion, the present study demonstrated that G6PD may facilitate ccRCC cell invasive ability by enhancing MMP2 expression through ROS­MAPK axis pathway.


Assuntos
Carcinoma de Células Renais/patologia , Glucosefosfato Desidrogenase/metabolismo , Neoplasias Renais/patologia , Metaloproteinase 2 da Matriz/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucosefosfato Desidrogenase/genética , Humanos , Rim/patologia , Sistema de Sinalização das MAP Quinases/genética , Invasividade Neoplásica/patologia , Via de Pentose Fosfato/genética , Espécies Reativas de Oxigênio/metabolismo , Organismos Livres de Patógenos Específicos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Oncotarget ; 8(65): 109043-109060, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29312589

RESUMO

Ectopic Glucose 6-phosphate dehydrogenase (G6PD) expression plays important role in tumor cell metabolic reprogramming and results in poor prognosis of multiple malignancies. Our previous study indicated that G6PD is overexpressed in clear cell renal cell carcinoma (ccRCC), the most common subtype of RCC. However, its role in RCC is still unclear. Here, we demonstrate that G6PD is not only up-regulated in all types of RCC specimens but also displays higher activities in RCC cell lines. G6PD overexpression promoted RCC cell proliferation, altered cell cycle distribution, and enhanced xenografted RCC development. G6PD up-regulated ROS generation by facilitating NADPH-dependent NOX4 activation, which led to increased expression of p-STAT3 and CyclinD1. Enhanced ROS generation rescued the p-STAT3 and CyclinD1 expression reduction in G6PD-knockdown cells, while ROS scavengers reversed the up-regulated p-STAT3 and CyclinD1 expression in G6PD-overexpressing cells. Furthermore, p-STAT3 activated G6PD gene expression via binding to the G6PD promoter, demonstrating that p-STAT3 forms a positive feedback regulatory loop for G6PD overexpression. G6PD expression was up or down-regulated in response to the impact of p-STAT3 activators or inhibitors. Therefore, G6PD may be an effective RCC therapeutic target.

7.
Appl Opt ; 50(24): 4701-10, 2011 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-21857691

RESUMO

In support of multiband imaging system performance forecasting, an equation-based triangle orientation discrimination (TOD) model is developed. Specifically, with the characteristic of the test pattern related to spectrum, the mathematical equations for predicting the TOD threshold of the system with distributed fusion architecture in the IR spectrum band are derived based on human vision with the "k/N" fusion rule, with emphasis on the impacts of fusion on the threshold. Furthermore, a figure of merit Q related to the TOD calculation results is introduced to analyze the relation of the discrimination performance of multiband imaging system to the size and the spectral difference of test pattern. The preliminary validation with the experiment results suggests that our proposed model can provide a reasonable prediction of the performance for a multiband imaging system.


Assuntos
Algoritmos , Modelos Teóricos , Simulação por Computador , Diagnóstico por Imagem/métodos , Humanos , Espectrofotometria Infravermelho , Visão Ocular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...